Ученые с помощью интенсивного лазера создали «оптическую ракету»

Эксперименты со сгустками электронной плазмы.

В своих последних экспериментах ученые из университета Небраски-Линкольна при помощи импульсов интенсивного лазерного света создали сгустки электронной плазмы, которые после этого были ускорены до скорости, близкой к скорости света.

Один из лазеров в Лаборатории экстремального света в Университете Небраски-Линкольн | Фото: unl.edu

«Эти плазменные сгустки можно назвать термином «оптическая ракета» из-за огромного значения сил, обеспечиваемых воздействием света на плазму.

Электроны подверглись воздействию сил, в триллион триллионов раз больше, чем силы, которые воздействуют на астронавта во время запуска в космос», — рассказывает профессор Дональд Умстадтер.

Созданная учеными «оптическая ракета» является не только практическим примером использования сил, которыми свет может воздействовать на материю.

Данный эффект можно будет использовать в будущем для создания новых сверхкомпактных ускорителей частиц и устройств на их основе.

В обычных условиях обычный свет обеспечивает воздействие крошечных сил на объекты, на поверхности которых он поглощается, рассеивается или преломляется.

Одним из примеров использования сил света является так называемый «солнечный парус», который может использоваться для разгона небольших космических аппаратов без затрат топлива на это дело.

Однако, из-за того, что сила давления, создаваемая светом, очень мала, то космический аппарат с солнечным парусом будет разгоняться до высокой скорости медленно и долго, в течение нескольких единиц или десятков лет.

Но, при воздействии света на материи может возникнуть и другой тип сил. Это происходит, когда свет имеет очень большой градиент его интенсивности, и такие силы используются в оптических пинцетах, к примеру. Но опять же, и эти силы имеют очень малое значение.

В своих экспериментах ученые из Небраски сфокусировали луч лазерного света на облаке плазмы. Под воздействием света из плазмы были удалены электроны, которые двигались в направлении распространения лучей света.

Затем эти электроны за счет градиента света были «пойманы» на гребнях пиков «бегущих» оптических волн, что позволило разогнать их до релятивистских скоростей.

Белые сферы представляют собой два лазерных импульса с плазменными волнами в их следах | Фото: unl.edu

Для реализации такого типа ускорения ученым пришлось разработать технологию контроля и управления начальной фазой бегущих оптических волн, которая станет основой будущих сверхкомпактных ускорителей электронов.

И в заключение следует отметить, что базой эксперимента, проведенного учеными из Небраски, являлась работа в области численного моделирования, проведенная учеными из университета Джао Тонг, Шанхай, Китай.

А основой работы китайских ученых, в свою очередь, стала теория, описывающая данный механизм, разработанная Дональдом Умстадтером более чем два десятилетия назад.

Подписывайтесь на Квибл в Viber и Telegram, чтобы быть в курсе самых интересных событий.

  • Последние записи

  • Больше из архива Наука и технологии